Home AnaCom AnaCom (Chapter 2) (Mid)
Home AnaCom AnaCom (Chapter 2) (Mid)

AnaCom (Chapter 2) (Mid)


Answer:

2.1-2(a)

We have two signals x(t) and y(t) in Fig. P2.1-2a (not fully drawn here, but let's assume they are simple pulses).

Step 1: Energy of a signal

The energy of a continuous-time signal x(t) is:

Ex=x(t)2dt

Similarly for y(t):

Ey=y(t)2dt

Step 2: Energy of x(t)+y(t) and x(t)y(t)

Let’s compute Ex+y:

Ex+y=[x(t)+y(t)]2dt=[x(t)2+y(t)2+2x(t)y(t)]dt=Ex+Ey+2x(t)y(t)dt

Similarly:

Exy=Ex+Ey2x(t)y(t)dt

Step 3: When are they equal to Ex+Ey?

If x(t)y(t)dt=0 (i.e., x and y are orthogonal), then:

Ex+y=Ex+EyExy=Ex+Ey

In part (a) of the figure (assumed shape), x(t) and y(t) are non-overlapping in time or arranged so that x(t)y(t)dt=0.
So yes, Ex+y=Exy=Ex+Ey.


2.1-2(b)

Repeat for the second signal pair in Fig. P2.1-2b.
If x(t) and y(t) are orthogonal, same result.
If not orthogonal, then Ex+yExy.


2.1-3

Power of a sinusoid Ccos(ω0t+θ):

For a sinusoid, average power = C22.

Reason:

cos2(ω0t+θ)=1+cos(2ω0t+2θ)2

Average over one period:
cos2()=12
So:

P=C22

2.1-4

Given: g(t)=C1cos(ω1t+θ1)+C2cos(ω2t+θ2), with Ï‰1=ω2=ω.

Let’s find power:

We know:
Power of Acos(ωt+Ï•) is A2/2.
But here the two cosines have same frequency, so they add phasorially:

g(t)=Re[C1ej(ωt+θ1)+C2ej(ωt+θ2)]=Re[ejωt(C1ejθ1+C2ejθ2)]

Let Cejθ=C1ejθ1+C2ejθ2.
Then C2=C12+C22+2C1C2cos(θ1θ2).

So g(t)=Ccos(ωt+θ), whose power is C2/2:

P=C12+C22+2C1C2cos(θ1θ2)2

Not equal to (C12+C22)/2 unless cos(θ1θ2)=0.


2.1-5

Given a periodic g(t) (triangular or rectangular waveform in Fig. P2.1-5).
Let’s assume it’s a square wave amplitude A, period T, duty cycle 50%.

Power of periodic signal:

P=1T0T[g(t)]2dt

For square wave from A to A, half time A, half time A:

g(t)2=A2

So P=A2.

(a) g(t)

Power = A2 (same, squaring removes sign).

(b) 2g(t)

Power = (2A)2=4A2.

(c) cg(t)

Power = c2A2.

RMS value = Power.


2.1-6

Find power and RMS for given figures.

(a) Fig. P2.1-6a

If it’s a constant A, then:

P=A2,RMS=A

(b) Fig. 2.16

If it’s a sine amplitude A:

P=A2/2,RMS=A/2

(c) Fig. P2.1-6b

If it’s a shifted sine, same power A2/2.

(d) Fig. P2.7-4a

If it’s a periodic triangular wave amplitude A:
Let’s compute:
For triangle wave from 0 to A linearly, then down:
Average of square = A2/3 for full triangle centered at zero? Actually, for a triangle wave peak AP=A2/3.

(e) Fig. P2.7-4c

If it’s a full-wave rectified sine amplitude A:
g(t)=Asin(ωt)
Square: A2sin2(ωt) averaged = A2/2? Wait, check:
sin2 average = 1/2, so P=A2/2 for full-wave rectified sine.


Final summary:

  • Energy signals: use integration of square.

  • Power of sinusoid: C2/2.

  • Power of sum of equal-frequency sinusoids: depends on phase difference.

  • RMS = Power.

 

Comments

You May Also Like